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Abstract— Mini-UAVs (Unmanned Aerial Vehicles) have been 
the subject of a large number of successful designs aimed to 
research, commercial and military purposes. A mini-UAV 
platform can be considered as a miniaturized aircraft so that 
classical design methodologies can be extended to this aerial 
vehicles category. However, due the presence of plant 
uncertainties, flight dynamic analysis and control system 
design are critical, and suitable robustness techniques need to 
be developed. In this paper, we present an innovative robust 
control strategy based on powerful tools provided by the 
theory of randomized algorithms. Within the context of the 
National Project Cofin 2004, the proposed methodology has 
been implemented for guidance/trajectory tracking and 
platform stabilization feedback loops of the autopilot system. 
The numerical results obtained are presented. 
 

I.  INTRODUCTION  

Unmanned Aerial Vehicles (UAVs) have become 
increasingly attractive for industries as well as for 
researchers in aeronautics for various economic and safety 
reasons. These platforms can be remotely controlled or they 
can autonomously fly without pilot on-board, for 
surveillance and reconnaissance missions in dangerous 
areas. Clearly, they encounter a great number of useful 
applications both  in civil and military fields. Among the 
military applications, surveillance, targeting and 
communications can be counted. Civil missions also have 
several objectives, which in some cases coincide with 
military ones. In particular, UAV platforms enable 
localization of missing people, reconnaissance and 
surveillance of territories such as steep slopes, traffic 
monitoring, fire and rescue operations, biochemical sensing 
and sensor placement. These platforms can be divided into 
different categories according to size, endurance or mission 
range, but one of the most common classifications of UAV 
typologies available in the literature is related to the 
platform size.  

In the last decade, the acronym MAVs (Micro Aerial 
Vehicles) has been used to define flying objects 
characterized by physical size approximately smaller than 6 
inches, in length, width or height. Recalling a classical 
definition [1], these flying objects can be considered as 
``aerial robots, as six-degree-of freedom machines whose 
mobility can deploy a useful micropayload to a remote, or 
otherwise hazardous location, where it may perform any of 
a variety of missions.'' The concept of uninhabited aerial 
vehicles of reduced dimensions, able to perform mission 
profiles not compatible with any existing piloted platforms, 

was subsequently extended to bigger systems and it now 
incorporates the so-called Mini-UAVs, having maximum 
dimension up to 6 ft. These platforms have been the subject 
of considerable interest and development in recent years. A 
large number of successful designs have been performed 
for either research, commercial or military purposes by 
several universities, industries and government-funded 
agencies both in the US as well as in Europe.  

As a consequence of different applications and, hence, a 
different range-payload performance, several configuration 
concepts can be encountered within the Mini-UAV 
category. In fact, a fixed wing Mini-UAV can be 
considered as a miniaturized aircraft so that preliminary 
design issues and procedures applied to conventional 
platforms can be extended to this family of aerial vehicles. 
In spite of that, aircraft dynamics and flight control system 
definitions represent critical issues, influencing the 
approach for the design and flight testing phases. The 
reduced dimensions of these vehicles lead to highly 
nonlinear system behavior and unconventional dynamics in 
terms of natural frequencies and damping ratios. The 
inertial characteristics of the platform yield to 
unconventional mode characterization thus resulting in 
undesirable abrupt responses to piloted commands. 
Furthermore, the sensitivity to changes in flight conditions 
(concerning velocity more than altitude), the assumptions 
in aerodynamic database definition (e.g., stability and 
control derivatives), the inaccuracies in geometric and 
inertial data represent a set of uncertainties in plant and 
environment modeling. The result is that conventional 
control design methods are often not effective [2]. 
Therefore, the design of a flight control system which 
guarantees a suitable level of tolerance to environmental 
changes and platform manufacturing/modelling 
inaccuracies plays a key role whenever stability and 
performance requirements have to be fulfilled, see e.g. [3].  

Micro and Mini-UAVs represent a major challenge for 
control design, and robust control in particular. Robust 
control algorithms may be viewed as complementary to 
gain scheduling and fault tolerant control methods. In fact, 
the problem of searching the appropriate gains can be 
reformulated in terms of operating conditions representing 
the critical parameters by means of dynamic pressure 
and/or Mach number. On the other hand, the use of a fault 
tolerant approach strongly depends on the failure effects 
modeling. The failure types to be dealt with by the 
proposed methodology are related to finding an explicit 
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relationship between the failure entity and the plant 
parameters. Whenever this relationship is available, the 
critical parameters leading to instability or loss of 
performance may be easily detected.  

The applicability of various classical robustness 
techniques such as, for example, Linear Matrix Inequalities 
and related relaxation methods, and µ-theory [4], has been 
explored for the MH1000 platform. However, the 
mathematical model is affected by nonlinear uncertainty of 
parametric type. In addition, this model is obtained by 
numerical linearization of the full order nonlinear system 
representing the aircraft dynamics, so that explicit 
relationships between the state-space matrices and the 
uncertain parameters are not available. For these reasons, in 
this paper we follow a different innovative approach for 
gain synthesis. This approach makes use of uncertainty 
randomization and is based on the theory of randomized 
algorithms [5]. These algorithms are easy to implement, 
have low computational complexity and are associated with 
robustness bounds that are generally less conservative than 
the classical ones, obviously at the expense of a 
probabilistic risk of failure.  

The theory of randomized algorithms follows the 
pioneering line of research that was initiated by Stengel [6] 
in the early eighties. In several subsequent papers [7][8][9] 
and references therein, various techniques, mainly based on 
Monte Carlo simulations, have been explored for the 
computation of the probability of instability, and related 
performance concepts. The application area providing 
motivations for the development of these methods is indeed 
aerospace control, and the results obtained are very 
successful. In this line of research, specific attention is 
devoted to reduced order models of the aircraft dynamics 
by analyzing the effects of aerodynamic uncertainties.  

We now describe the organization of the paper and the 
main results obtained. In Section II, we briefly introduce 
the MH1000 platform, representing the reference platform 
for the control algorithms testing. In Section III, we present 
the mathematical formulation of the plant dynamics. This 
formulation is based upon a full six degrees-of-freedom 
nonlinear mathematical model, see [10] for details. 
Uncertainty characterization is the focus of Section IV. We 
consider the vector of l real uncertain parameters δi, 
restricted within upper and lower bounds. In addition, each 
parameter δi is a random variable with an assigned 
probability density function, either uniform or truncated 
normal, within this interval. Uncertainties for the MH1000 
platform include parameters related to flight conditions, 
aerodynamic data, geometric and inertial data, see Section 
IV for a precise description. In this section, we also briefly 
introduce the concept of specification property S which is 
utilized subsequently in the randomized algorithms. In 
Section V, we present three randomized algorithms which 
should be used sequentially. The first algorithm is based 
upon the selection of a subset of m critical uncertain 
parameters, and has the objective to provide an initial set of 
randomly generated controller gains Krand. The specification 
property is explicitly defined and a stopping criterion in 
terms of the probabilistic confidence and accuracy is given. 
This stopping criterion is based upon the so-called “Log-
over-log” Bound [11]. Algorithm 2 uses a set of gains Krand 
previously obtained and computes the empirical probability 
that given performance specifications are satisfied. To this 

end, a bound on the required sample size, the Chernoff 
Bound [12] is utilized. Finally, Algorithm 3 has a structure 
similar to Algorithm 2, but different specification 
properties, derived from standard flying qualities of piloted 
aircraft [13], are used. In Section VI we present the 
numerical results related to the case study. In particular, in 
this section, classical graphical tools, such as the root locus 
plot and the standard bandwidth levels, highlighting the 
region of interest defined by the specification property, are  
used to compare various solutions and to single out the best 
fitting one. The conclusions are given in Section VII. 

 II THE MH1000 PLATFORM  
The aerial platform MH1000 is based on the MicroHawk 

configuration, developed at the Aerospace Engineering 
Department, Politecnico di Torino (national patent no. 
TO2003A000702, holder Politecnico di Torino, 
international request PCT/IB2004/002940).  The reference 
platform is characterized by a conventional layout 
consisting of fixed wing, tailless integrated wing-body 
configuration, tractor propeller driven. A scaled version of 
the MicroHawk configuration, named MH1000 (Fig. 1), 
characterized by 1 m wingspan and a total weight of 
approximately 1.5 kg, was designed and tuned to meet the 
mission specifications required by the project. The flight 
envelope of the platform ranges from 40 kph to 72 kph; an 
average flight speed of about 55 kph allows to achieve a 
flight endurance of at least 40 minutes. The platform flight 
performances, the autopilot system effectiveness and the 
compliance of the integrated system to the mission 
requirements have been tested by extensive on-site flight 
tests, also in cooperation with the Environment Protection 
and Damage Preemption Agency of Sicily.   

 

 
Fig. 1: The MH1000 platform during a flight test. 

  

 III PLANT DYNAMICS 

The aerial platform is described by a full six degrees-of-
freedom nonlinear mathematical model, consisting of 
twelve, coupled, nonlinear, ordinary differential equations 
[10]. The model is based on three point mass equations, 
three attitude dynamics equations, three kinematical 
relationships and three navigation equations for trajectory 
evaluation. The equations of motion, both for point mass 
center of gravity dynamics and for attitude dynamics, are 
written with reference to the body-axes reference frame, i.e. 
a vehicle body-fixed system, having origin at the vehicle 
center of gravity and axes aligned to vehicle reference 
directions. Structural flexibility is neglected so that the 
rigid body assumption is made. This assumption is 
commonly used in general flight simulations since the 
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attention is focused on trajectory analysis and overall 
aircraft performance. Furthermore, this assumption makes 
sense because we are dealing with a Mini-UAV 
characterized by small dimensions and weight. The flat and 
non-rotating Earth assumption is also used since it does not 
affect model accuracy of low speed flight over a small 
region of the Earth. Finally, the aerodynamic loads acting 
on the aerial platform are obtained utilizing an aerodynamic 
model, based on experimental wind tunnel testing and 
numerical computations.  

The point mass center of gravity dynamics and  the 
attitude dynamics equations, written in matrix notation, are  
given by: 
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where the body-axes components of the velocity vector 
{VE}B and of the angular velocity vector {ω}B are 
 

{ } [ ]T
BE WVUV =  

{ } [ ]T
B RQPω =  

 
The aerodynamic and propulsive forces and moments 
vectors are represented by the vectors {FA,T}B and {MA,T}B, 
respectively. The matrix [I]B and m are the inertia matrix 
and  the mass of the rigid body, respectively, and [ΩωB]B is 
the cross-product matrix of the angular velocity vector 
{ω}B. Finally, {g}V  is the  gravity acceleration expressed 
in the local navigation reference (NED axis) system and the 
matrix [TVB] represents the rotation matrix from body to 
NED reference system.  
The vehicle attitude is modeled by the Euler kinematical 
equations: 

{ } [ ]{ } BVA ωTΦ =&  

 
where the Euler angles vector {Φ}={φ θ ψ} consists of roll, 
pitch and yaw, respectively. The matrix [TVA] denotes the 
kinematical relationship between the Euler angles and the 
angular velocities.   
The navigation equations for trajectory evaluation is 
expressed by  
 

{ } [ ]{ } BEVB VTp =&  

 
where the vector {p}={XV YV ZV}  represents the center of 
gravity coordinates in a geographic system having origin at 
the vehicle center of gravity. 

The mathematical formulation also includes the 
modelling of the main subsystems (engine, propeller, 
actuators). As to the propulsive system, linear relationships 
are applied to model the voltage supply and current drain 
trend of variation for a DC motor-based propulsion. The 
propeller performance is estimated by implementing the 
blade element theory to compute propulsive forces and 
moments at a given regime of rotation [14].  

 A state-space formulation is obtained by numerical 
linearization of the full order system around an equilibrium 
condition (x0, x0, u0). The numerical linearization algorithm 
is based on the implicit formulation of the ordinary 
differential equations representing the aircraft dynamics: 

 
( ) 0ux,,xh =&  

 
where x represents the vector of state variables and u is the 
vector of control variables. 
 

IV UNCERTAINTY CHARACTERIZATION 

To characterize parametric uncertainty, the standard 
state-space formulation is used to re-write the linearized 
system of the plant dynamics: 

 
( ) ( ) ( ) ( ) ( )tu∆Btx∆Atx +=&  

 
where  A ∈  Rn,n, B ∈  Rn,p, and ∆ consists of l uncertain 
parameters, i.e., 
                                      [ ]T

21 δ,,δ,δ∆ lL=  

 
The controller structure we use is a state-feedback of the 

form u = -K x, so that the problem is to find a gain matrix K 
satisfying given specifications 
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Next, we assume that each uncertain parameter δi is a 

random variable distributed according to a given 
probability density function (p.d.f.) pδi(δi), in the interval 
[δi

-, δi
+]. We define the set  

B∆ = {∆ : δi ∈  [δi
-, δi

+], i = 1, 2, …, l} 
 

In particular, the parameter δi may be uniformly 
distributed or distributed according to a truncated Gaussian 
density. Then, we consider N∆ independent identically 
distributed (i.i.d.) samples 

[ ]Tjj
2

j
1

j δ,,δ,δ∆ lL=  

of the random vector ∆. In particular, this means that the 
sample δi

j of the random parameter δi is drawn within the 
interval [δi

-, δi
+] according to the distribution pδi(δi). 

The next step is to introduce a suitable specification 
property S, which is the set of all controller gains or 
uncertain parameters satisfying suitably defined closed loop 
specifications. In particular, S1 refers to controller gains K, 
while S2 and S3 are related to uncertain parameters. 
Concrete instances of specification properties for the 
MH1000 platform are provided in Section VI and include, 
for example, limits on the step or frequency response, or 
restrict the natural frequency and damping ratio to a given 
range.  

. 
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In the first (synthesis) phase, we also assume that the 
gain matrix K is random. Then, we take NK i.i.d. matrix 
samples  

{K1, K2, …, KNK }. 
 
In particular, the sample kj

im of the random gain kim is 
drawn within the given interval [k-

im, k+
im] according to a 

uniform distribution. We define the set  
BK = {K : kim ∈  [k-

im, k+
im], i = 1, 2, …, p, m = 1, 2, …, n} 

 
The objective is to find a gain matrix Krand = Kj which 

satisfies the specification property S1. Clearly, it is 
important to determine the sample size NK which provides 
a stopping rule in the randomized algorithms described 
later in Section V. To this end, we use an explicit bound 
often denoted “Log-over-log“ which is based on two 
probabilistic quantities, restricted within the intervals (0,1), 
denoted as accuracy ε and confidence η, see [11] and [5] 
for details.   

Let {K1, K2, …, Ks } be the random matrices satisfying 
S1, where s denotes the number of successes, i.e., the 
number of matrix gains satisfying S1. The second 
(robustness) phase utilizes Krand=Kj, j=1,2, …,s, previously 
computed and has the objective to estimate the “true” 
probability ptrue that the specification property S2 is 
satisfied. Formally, we define  

 
( ){ }∫ ∩∈∆ ∆

∆∆=
2SBtrue dpp

 

 
Then, we introduce the indicator function 
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The estimated probability that the specification property S2 
is satisfied is immediately given by 
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The estimate pN∆ is usually referred to as empirical 

probability. The sample size needed to obtain a “reliable 
probabilistic estimate” pN∆  is given by the Chernoff Bound, 
see [12] and [5] for further discussions on this topic. 

V RANDOMIZED ALGORITHMS FOR GAIN 
SYNTHESIS AND ROBUSTNESS ANALYSIS 

Three randomized algorithms for gain synthesis  and 
robustness analysis are shown in this section. As previously 
discussed, the controller structure is a state-feedback of the 
form u  = -K x, so that the problem is to find a suitable gain 
matrix K. Three algorithms are presented for gain synthesis, 
stability analysis and performance analysis, respectively. 
The algorithms are strongly coupled and closely related to 
the operating flight conditions and to the flying quality 
standards. In particular, the algorithms are used 
sequentially: Algorithm 1 is used for synthesis to provide 

an initial set of controller gains, while Algorithms 2 and 3 
are then used to improve robustness. The performance 
requirements specified in Algorithm 3 are different than 
those of Algorithm 2, so that refinements on the choice of 
gains are provided.  

Algorithm 1 (Fig. 2)  is based upon the selection of a 
subset of m ≤ l critical uncertain parameters. That is, we 
consider a vector ∆c containing only m components of ∆: 

  
[ ]T

m21c δ,,δ,δ∆ L=  

 

 
Fig. 2: Algorithm 1 – Random Gain Selection. 

Then, setting the critical uncertain parameters to all 
combinations of their upper or lower values δi

+ or δi
-, 

suitable controller gains are randomly selected. This 
selection makes use of a given p.d.f. of controller gains and 
their a priori bounds. The remaining non-critical parameters 
are set to their corresponding nominal value, i.e., δi

0, i = 
m+1, …, l. Clearly, since the state-space matrices A(∆) and 
B(∆) depend on ∆, this requires to compute M = 2m critical 
matrices of the form: 
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and M matrices of the form 
 

( )
( )

( )











=

=

=

+
−−−

+
++−

+
+++

0
l

0
1mm21

M
c

0
l

0
1mm21

2
c

0
l

0
1mm21

1
c

δ,δ,δ,,δ,δBB

δ,δ,δ,,δ,δBB

δ,δ,δ,,δ,δBB

,

,

,

LL

M

LL

LL
 

 
We observe that in our context, the number of critical 
parameters is very limited (two or three at most) and 
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therefore the construction of the critical matrices is not a 
serious computational problem. 

Next, we consider a specification property S1 for 
Algorithm 1 which depends on the controller gains K. The 
property of satisfying S1 is verified only for the upper and 
lower values of the critical parameters. We remark that the 
algorithm terminates after a number of iterations dictated 
by the Log-over-log Bound providing a set of gains {K1, 
K2,…,Ks}. 

The starting point of Algorithm 2 (Fig. 3) is the use of 
these gains. For each gain Krand = Kj, j = 1, 2,…,s, the 
algorithm is based on randomization of all uncertain 
parameters (and not only the critical ones) within their 
given intervals, according to a specified distribution p(∆). 
Given accuracy ε ∈  (0,1) and confidence η ∈  (0,1), the 
Chernoff Bound is used for computing the required sample 
size for the specification property S2. The empirical 
probability of satisfaction is computed. 

Algorithm 3 (Fig. 4) is finally utilized. This algorithm 
has a structure similar to Algorithm 2, but a different 
specification property S3 based on flying qualities [13] is 
introduced. The corresponding empirical probability is 
computed using the same samples size utilized in 
Algorithm 2. 

 

 
Fig. 3: Algorithm 2 – Probabilistic Robustness Analysis. 

 

 
Fig. 4: Algorithm 3 – Probabilistic Robust Performance. 

 

 VI NUMERICAL RESULTS 

In this section, numerical results are provided. The 
proposed control design methodology has been applied to 
the design of an embedded real-time system for 
autonomous flight control. The autopilot system includes 
guidance, navigation and loop stabilization. The obtained 
gain set is used for guidance/trajectory tracking and 
platform stabilization feedback loops. The guidance laws 
include altitude/velocity and heading hold loops, while the 
stabilization issues are related to hold attitude angles and to 
damp attitude rates by commanding aerodynamic control 
surface deflections. The proposed gain synthesis 
methodology can be applied to full state feedback as well 
as to output feedback control design. 

 
The case study reported here is based on the assumption 

of decoupled dynamics and it is focused on the longitudinal 
plane dynamics stabilization. In particular, we restrict our 
attention to a full state feedback longitudinal control, just 
demanded to the elevon control surfaces. 

The state vector x ∈  R4 is defined as: 

[ ]Tθ      q      α      Vx =  

 
where V is the flight speed, α is the angle of attack, q is the 
pitch rate and θ is the pitch angle. 

The control vector u ∈  R is defined as: 

[ ]eu δ=  

 
where δe consists of the symmetrical elevon deflection. 
State and control matrices characterizing the nominal 
reference condition (V = 13 m/s; h = 50 m) are obtained by 
numerical linearization: 
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Next, we observe that structured parameter uncertainties 

are taken into account, including those related to flight 
conditions (dynamic pressure), aerodynamic data (stability 
and control derivatives), geometric and inertial data. 
Uncertainties related to the flight conditions can be 
ascribed to the real flight in a non-ideally-calm air and to 
the need to cover a portion of the flight envelope as large as 
possible. Uncertainties concerning the aerodynamic data 
can be related to experimental measurement errors or 
computational approximations due to numerical evaluation. 
Finally, uncertainties in terms of geometric and inertial data 
may take into account manufacturing inaccuracies. 
Therefore, the vector ∆ ∈  R16 consisting of uncertain δi is 
described in Table I.  For simplicity, only approximate 
values of upper and lower bounds are shown. 

 
TABLE I. PARAMETER UNCERTAINTIES 
Plant and flight condition uncertainties 

# parameter p.d.f. δi % δi
- δi

+ 
1 flight speed [m/s] U 13.0 ±15 11.0 15.0 
2 altitude [m] U 50.0 ±100 0.0 100.0 
3 mass [kg] U 1.5 ±10 1.35 1.65 
4 wingspan [m] U 1.0 ±5 0.95 1.05 
5 mean aero chord  [m] U 0.536 ±5 0.509 0.563 
6 wing surface [m2] U 0.522 ±10 0.470 0.574 
7 moment of inertia [kgm2] U 0.0566 ±10 0.0509 0.0623
 

Aerodynamic database uncertainties 
# parameter p.d.f. mean % σi 
8 CX coefficient [-] G -0.01215 ±10 0.0004 
9 CZ coefficient [-] G -0.30651 ±5 0.005 
10 Cm coefficient [-] G -0.02401 ±5 0.0004 
11 CXq derivative [rad-1] G 0.20435 ±10 0.0065 
12 CZq derivative [rad-1] G -1.49462 ±10 0.05 
13 Cmq derivative [rad-1] G -0.76882 ±5 0.01 
14 CXδ derivative [rad-1] G 0.17072 ±10 0.0054 
15 CZδ derivative [rad-1] G -1.41136 ±5 0.022 
16 Cmδ derivative [rad-1] G -0.94853 ±5 0.015 

 
In the remaining of the Section the obtained numerical 

results characterizing the three phases previously described 
are presented.  

 
Phase 1: Random Gain Synthesis 
As critical uncertain parameters for random gain 

selection flight speed and mass are chosen, i.e. the vector 
∆c is defined as: 

 
[ ]T

31c δ,δ∆ =  

  
The flight speed has been chosen as critical parameter in 

order to optimize gain scheduling issues, while the take-off 
mass represents a key parameter in mission profile 
definition and flight performance evaluation. The lower and 
upper bounds of the critical uncertain parameters are 
reported in Table I. 

The specification property S1 is defined as follows: 
S1 = {K ∈  BK  : Acl(K) = Ac-BcK satisfies the properties 

listed below} 
( )
( )
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where λi represents the eigenvalues and ω and ζ are the 
undamped natural frequency and damping ratio of the 
system characteristic modes, respectively. The subscript SP 
and PH refer to the short period and the phugoid mode, 
representing the two dynamic modes characterizing the 
aircraft motion in the longitudinal plane. The specification 
property definition is strictly related to the user needs in 
terms of mission profile and to the reference platform. 
From the properties specified above, it can be observed that 
a completely decoupled dynamics with classical modal 
characterization (two periodic stable modes) are required 
for the MH1000 platform. 
    The number of random samples for the K matrix, 
computed according to the Log-over-log Bound with ε = 
4⋅10-5 and η = 3⋅10-4, is NK = 200,000. The obtained set of 
random gains satisfying the specification property S1 are 
reported in Table II. 

 
TABLE II. RANDOM GAIN SET FROM GAIN SYNTHESIS 
Gain set KV Kα Kq Kθ 

K1 0.00044023 0.09465 0.015774 -0.0047351
K2 0.00021545 0.095812 0.015555 -0.0032351
K3 0.00054999 0.094308 0.015482 -0.0048634
K4 0.00010855 0.091832 0.01530 -0.0040438
K5 0.00039238 0.094827 0.016093 -0.0041734

 
Phase 2: Probabilistic Robustness Analysis 
The uncertain parameters considered in the case study, 

their nominal values, probability density function and 
tolerances are given in Table I. As can be observed from 
Table I, uniform and gaussian probability density functions 
have been used to characterize parameter uncertainties: 
geometric, inertial and operational uncertainties are 
characterized by uniform p.d.f. while the set of 
uncertainties related to the aerodynamic database are 
characterized by a gaussian p.d.f. This criterion has been 
adopted due to the nature of the parameters: the uncertain 
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value of the aerodynamic derivative has to be intended with 
higher probability close to the nominal value 
experimentally or numerically obtained. Since the 
aerodynamic data vary as a function of the velocity, the 
mean value as well as the variance of the uncertainties 
corresponding to these parameters are approximate values 
referring to a fixed operating condition.  

The specification property S2 is defined as follows: 
S2 = {∆ ∈  B∆  : Acl(∆) = Ac(∆)-Bc(∆)Krand satisfies the 

related properties} 
The user defined properties related to S2 are the same as 

for S1. The number of samples for the specification property 
S2, is obtained by the Chernoff bound with ε = 0.0145 and 
η = 0.0145, and it is equal to N∆ = 5,000. 

The results in terms of estimated probability of stability 
are reported in Table III.  

 
TABLE III. ESTIMATED PROBABILITY OF STABILITY 

RELATED TO PHASE 2 (SSRA) AND PHASE 3 (SPRA)  
Gain set SSRA SPRA 

K1 88.56 93.58 
K2 90.60 95.16 
K3 89.31 90.80 
K4 93.86 84.78 
K5 85.14 96.06 

 
The estimated probability of stability characterizes the 

level of matching the desired dynamics and it represents a 
key feature to choose the “best robust solution”. To this 
end, graphical tools have been also utilized to perform  
robustness analysis of the designed closed loop system. As 
an example, Fig. 5 reports the root locus plot for two 
different solutions, characterized by different probability 
levels pN∆. It can be observed that the closed loop system 
obtained by the random gain set K2 fulfilling specification 
property S1 could give raise to some unstable conditions 
when all uncertain parameters are considered. Therefore, 
even if the associated probability of stability is high, it is 
not considered as a “good” gain and it is consequently 
discarded. 

 

 
Fig. 5: Root locus plot for K2 (black) and K4 (blue) highlighting the 

regions of interest for stability robustness analysis. 

 

Phase 3: Probabilistic Robust Performance 
The uncertain parameters and the random samples N∆ 

considered for the Phase 3 of the proposed methodology are 
the same as for the Phase 2 (Table I).  

The specification property S3 is defined as follows: 
S3 = {∆ ∈  B∆  : Acl(∆) = Ac(∆)-Bc(∆)Krand satisfies the 

properties listed below} 

0.050.0
rad/s5.0ωrad/s2.5

P

BW
<τ<

<<  

where ωBW and τP are the bandwidth and the phase delay of 
the frequency response, respectively. The specification 
property S3 is defined accordingly to the bandwidth 
criterion reported in the aeronautical standards [13]. A 
graphical approach to the performance robustness analysis, 
based on the bandwidth criterion plot, has been added to the 
evaluation of the empirical probability of satisfaction of the 
specification property. The case study discussed here does 
not include properties related to time domain response.  

 

 
Fig. 6: Bandwidth criterion plot for K1 (black) and K3 (blue) highlighting 

the regions of interest for performance robustness analysis. 

The results in terms of estimated probability of stability 
are reported in Table III. Differences could be shown for 
the probability values between SSRA and SPRA results: 
they can be due to the dependence of the stability criteria 
on the user’s experience and knowledge about the plant 
dynamics despite of the relationships of the performance 
metrics with the standard requirements. For the present case 
study, the K1 solution has been chosen as the best fit 
solution according to a compromise between the stability 
and the performance metrics. 

 VII CONCLUSION AND REMARKS  

In this paper, we developed a methodology, based on the 
theory of randomized algorithms, for gain selection and  
robustness analysis of the Mini-UAV platform MH1000. 
The proposed methodology demonstrates to resolve 
successfully some critical issues arising when 
classical/modern control techniques are used. In particular, 
the numerical results given in Section VI enable the 
aerospace engineer to compute the estimated probability 
that specific performance requirements are met. 

Subsequent research will be performed utilizing different 
control structures, thus showing the flexibility of the 
approach in different contexts.  
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An extended version of this paper has been submitted to 
an international journal for possible publication. 
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